
Semantic Information Extraction 
and Generation of Dynamic 

Knowledge Graphs
Damir Cavar

February 2019

University of Illinois at Urbana-Champaign

3/5/2019 1(C) 2019 by Damir Cavar



Agenda

• Goals

• Knowledge Graphs

• Information Extraction

• NLP now and then

• Issues

• HooSIER Knowledge Graph Extractor

• Demo

3/5/2019 2(C) 2019 by Damir Cavar



Goals

• Information Extraction:
• Entities and Relations from text

• Open domain and domain specific
• Description of concepts, relations, detailed semantic properties using

• Description Logic approach
• Knowledge Graph approach
• Linking and Typing of entities and relations

• Natural Language Processing:
• Semantic and Pragmatic processing

• Implicatures and Presuppositions
• Reasoning and Common Sense

• Linguistic Processing

• Scalable and High-Performance Big-Data NLP for Text 2 Data
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Knowledge Graphs

• Assumption:
• First mention of term in a Google Blog

• Amid Singhal (2012), Introducing the Knowledge Graph: things, not strings 
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

• Reality:
• Use of Graphical Knowledge Representation is older

• Description Logic

• RDF, OIL and DAML to OWL

• Applications
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Knowledge Graphs back in 2000

• RDB-based SemNet
• Prior to OWL

• OIL, DAML were around

• No GraphDB

• No NLP technologies 
(Stanford CoreNLP, 
OpenNLP, spaCy, Polyglot, 
GATE, etc.)
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Knowledge Graphs

• Concepts and Relations
• Mostly unconstrained

• Domain specific or free

• Attributes and Values
• encoding properties, time reference, …
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Formal Semantics

• Meaning and Compositionality as Formal Mapping from Syntax to 
Semantic Representation
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Knowledge Graphs

• No computation or interpretation of logic equations
• Direct mapping of knowledge from text

• Description of Knowledge
• Directed Graph: encoding concept, events, domain specific knowledge…
• Attribute-Value encoded features like size and shape, but also event time references 

(start, end, duration), etc.

• Reasoning
• Prediction
• Machine Learning of concepts and concept properties
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State-of-the-Art

• Information Extraction
• Open IE

• Language Agnostic IE
• Entity detection

• Entity-Relation extraction

• Knowledge Graphs and Knowledge Representations
• Ontology learning

• Entity and Relation Linking
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OpenIE

• Unstructured natural language expressions to structured 
representations (Banko et al., 2007) 
• Structured representation:

• Relational tuples of semantic relations: argument – predicate – argument

• Relations are not a priori specified (not domain specific)

• Extraction of all entities and relations

• Domain agnostic entity and relation discovery

• Example:
• Tim Cook, the CEO of Apple and a board member of Alphabet Inc., announced 

that he will no longer serve in any function for Apple Inc.
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OpenIE

• Underlying goal:
• Tim Cook, the CEO of Apple and board member of Alphabet Inc. (…)

• Tim Cook – isA – CEO of Apple

• Tim Cook – isA – board member of Alphabet Inc.

• Not in the last relation ignored completely!

• Reality:
• Tim Cook – CEO of – Apple

• No relation to Alphabet Inc.

• He – serve in – function for Apple Inc.
• No anaphora resolution

• No processing of Negation
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OpenIE Issues

• Underlying NLP ranks between “acceptable” and “of limited use at 
best.”

• Entity recognition is broad
• Coreference analysis not reliable

• Lack of Linking
• Entities identified via Linking to concepts in Knowledge Graphs (e.g. YAGO, 

DBpedia)
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NLP Technologies

• Back in 2000
• Regular expressions and pattern matching
• Template-based text generation
• Finite State Dialog modeling
• Knowledge Graphs (SemNets) on RDBs
• Text2Speech

• Part-of-speech tagging
• Parsing
• Machine Translation

• Rule-based systems, probabilistic models, knowledge-based NLP
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NLP Technologies

• 2019: Focus on limited model types and technologies:
• Data driven and usage based modeling, ignoring knowledge, rules, universals

• Dependency Parse Trees from treebanks
• Treebank-derived Constituent Tree Parsers
• Label/Tag-based Semantic Role Labeling
• …
• Pipeline-architecture as such:

• Isolated modules with very limited NLP-focus chained in an input-output pipeline
• CoreNLP, spaCy, OpenNLP, LingPipe, GATE, NLTK, UIMA, …

• No parallel architectures!
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NLP Technologies

• State of the Art: (Sebastian Ruder’s overview)
• Part-of-Speech Tagging:

• Use: word-level part of speech annotation with a limited set of tags that encode some 
morphosyntactic features

• F1 score: 95% - 97% based on WSJ portion of Penn Treebank, more than 100 treebanks 
for UD

• Best performing: Deep Learning Approaches (alternatives not evaluated)
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NLP Technologies

• State of the Art: (Sebastian Ruder’s overview)
• Constituent Tree Parsing:

• Use: phrasal structure; relations, hierarchies and ambiguities between phrases; semantic 
scope relation; …

• F1 score: 92% - 95% based on Penn Treebank

• Best performing: Deep Learning Approaches (alternatives not evaluated)

• Dependency Parsing:
• Use: dependency relations between elements in the sentence; simplified annotation of 

functional relations: Subject, Object, Modifier, …

• F1 score on labels and relations: 91% - 94% based on Stanford Dependency conversion of 
the Penn Treebank

• Best performing: Deep Learning Approaches (alternatives not evaluated)
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NLP Technologies

• State of the Art: (Sebastian Ruder’s overview)
• Named Entity Recognition:

• Use: entity labeling – person, institution, location, time, currency, …

• F1 score: 90% - 92% based on Reuters RCV1 corpus with four NE-types (PER, LOC, ORG, 
MISC) using BIO notation

• Best performing: Deep Learning Approaches (alternatives not evaluated)

• Semantic Role Labeling:
• Use: Label predicate argument structure (Who gave what to who): Predicate, Subject, 

Object, entity and relation extraction

• F1 score: 81% - 84% based on OntoNotes benchmark of the Penn Treebank

• Best performing: Deep Learning Approaches (alternatives not evaluated)
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NLP Technologies

• F1 score margins and error rates:
• Basic token-level classification: error of approx. 4%
• Word-level annotation, syntactic parsing: 10%
• Semantic-level annotation: 30%

• What has changed since 2000?
• Cross-linguistic Coverage
• Speed

• Situation check:
• Mono-culture of training/test-datasets for data driven ML/DL-methods
• Limitation to weak linguistic models (e.g. Constituent Trees, NE-classes, Semantic 

roles), annotation standards (e.g. Dependencies)
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NLP Technologies

• Situation check:
• Limited use of NLP-pipelines: PoS-tagging, Lemmatization

• CoreNLP: Constituent Parser; Dependency Parser; Coreference Analysis; …

• spaCy: Dependency Parser

• NLTK: WordNet

• Lack of APIs that interface to linguistic output data structures
• NLP developers lack understanding of the linguistic annotations generated by pipelines 

or tools
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NLP Example

• Stanford Open IE (paper and website)

• Lack of intuition of dependency relations
• Modification of ROOT (took) by “born in a small town” is counterintuitive

• Lack of:
• Clause level hierarchical relation analysis (subordinate clauses and scope)
• Tempus, Mood, … annotation
• Pragmatic and semantic properties (and relevant linguistic features)
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Issues

• Transparency
• Lack of understanding of linguistic annotations
• No abstraction layer and API
• Blackbox models without introspection

• Deep Learning

• Data-driven Systems
• Knowledge driven engineering impossible

• Lacking grammar engineering interface

• Large data sets necessary
• Monoculture of data sets

• Error rate in a pipeline
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Issues

• NLP Technologies and Language Resources
• More than 7,100 estimated languages
• 300 estimated to be written
• 1% is well resourced (data and technology wise)

• Language Resources
• Mono-culture

• Limited data set or corpora as “standard”
• Evolutionary model of technologies that are tuned to excel on the “standard”

• Half-life of resources
• Corpora use value

• Annotation
• Errors
• Theoretically motivated
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NLP Example

• Scope between clauses:
• Reuters reported [ that [ Google bought Apple ] ]

• Reuters did not report [ that [ Google bought Apple ] ]

• Reuters did not deny [ that [ Google bought Apple ] ]

• Tense:
• Tim Cook bought Google.

• Tim Cook will buy Google one day.
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NLP Technologies

• Applied to real text:
• Sentence length over 10 to 15 tokens breaks common probabilistic or NN parsers 

(Dependency parsers, in particular)

• Problematic domains, for example:
• SEC, Financial, or Business Reports
• Case-law and legal documents
• Medical text (patient reports, documentations)

• Current free and open NLP-pipelines are of limited use.

• Are they of any use for serious NLP-based technologies?
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State of the Art

• ∆ between 2000 – 2018
• ASR improvements
• Knowledge Graphs, Ontologies
• Integration

• Data sources
• Interfaces, multi-modal interaction
• Device architecture

• Is there any significant progress in ___ ?
• Dialog management
• NLP at the utterance and discourse level
• Semantics and Pragmatics
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NLP Ensemble

• HooSIER
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Knowledge Representations

• Practical use cases:
• Dialogs

• Topic and concepts in focus (conversational example)

• Common Sense
• Anaphora resolution using semantic properties

• “Take the knife, cut the lime into two halves, and squeeze it.” (p.c. Matthias Scheutz)

• …
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Pipeline

• Knowledge Graph Generation
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Concept Relation Mapping

• Input:
• Tim Cook sold Apple.

• He bought Google.

• He likes apples.

• 1st level typing using:
• Named Entity Recognition
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Linking

• Identification of the unique entity in a large Knowledge Graph
• E.g. YAGO, DBpedia, ConceptNet, …

• Our approach:
• Disambiguation using word and graph embeddings

• Language Independent
• Language agnostic entity extraction
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Typing

• Identification of the closest Hypernym
• WordNet lookup

• Microsoft Concept Graph

• Using Linking results
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Word and Graph Embeddings

• Distributional Semantics approach
• Words are represented by vectors of a fixed length

• Vectors are prediction models (e.g. Word2Vec):
• Maximize the predicted likelihood of the words in their context

• Graph embeddings:
• Semantic and conceptual: concepts and relations in graph context

• Topological: shape of a conceptual sub-graph
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Knowledge Representations

• General World Knowledge
• From static to dynamic, with inferencing, reasoning

• Domain Specific Knowledge
• Medical, Financial, Business, Legal, etc.

• Discourse specific Knowledge
• Simple dialog memory (concepts and their linguistic features, relevant for 

anaphora resolution, coreference analysis)

• Knowledge Graph or Ontology of semantic concept space in encapsulated 
discourse
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Speech Acts, Implicatures, Presuppositions

• Deep Linguistic Processing:
• A to B: “I bought the blue car.”

• Implicature:
• A and B talked about the event earlier.

• There is a set of cars, at least 2 that was in the range of A’s action.

• None of the other cars in the set is blue.

• Linguistic indicators:
• Definiteness via “the”

• Specificity of the Noun Phrase
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Speech Acts, Implicatures, Presuppositions

• Deep Linguistic Processing:
• “Peter fed his cat.”
• Presupposition:

• Peter owns a cat.
• Peter owns cat food.
• …

• Linguistic indicators:
• Possessive

• Types:
• Universal linguistic properties (see Grice Maxims, Relevance Theory)
• Language specific properties (dependency to cultural and sociological aspects)
• Domain specific: e.g. “to be like milk”
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HooSIER IE Approach

• Advanced NLP technologies
• Deep linguistic processing

• Tense, Voice, Mood detection
• Hierarchical relations of elements in the clause, clause detection, scope reconstruction

• Identification of phrasal heads of arguments, compound structure, and 
modifiers

• Normalization of words and phrases
• Extraction of core semantic relations
• Extraction of modifiers and meta-information
• Mapping of relations into complex Graphs (towards Description Logic 

representations)
• Linking of entities and relations to Knowledge Graphs and Ontologies
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HooSIER IE Approach

• Deep Linguistics
• Tense, Voice, Mood detection

• Tim Cook left Apple.

• Tim Cook will leave Apple.

• Apple was bought by Google.

• Scope relations
• Tim Cook did not leave Apple.

• Tim Cook left, not Apple, but the board of Alphabet Inc.

• Clause detection and scope
• I wish [ Tim Cook left Apple ]

• I did not claim [ that Tim Cook left Apple ]
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HooSIER IE Approach

• Identification of phrasal heads of arguments, compound structure, 
and modifiers
• The former president of the United States, Barak Obama…

• Head: Obama

• Compound component: Barak

• Modification or Specification: “the former president of the United States”

• Mapping into complex Graphs
• Concepts or entities

• Relations between entities

• Attribute-value pairs associated with entities and relations
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HooSIER IE Approach

• Normalization of words and phrases
• Lemmatization

• chatting, went, hired →   chat, go, hire

• Reduction to core properties (semantic normalization)
• X was chatting with Y   →   X – talk – Y

• Multi-lingual normalization:
• Machine translation prior to extraction of entity-relation tuples

• Linking of entities and relations to a language neutral representation
• More later (using YAGO, MS Concept Graph, VerbNet, PropBank etc.)
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HooSIER IE Approach

• Extraction of core semantic relations
• Predicate argument structures:

• Tim Cook left Apple.
• Predicate: leave
• Argument 1 (subject, agent): Tim Cook
• Argument 2 (object, patient or beneficiary): Apple

• Tim Cook, who lives in San Francisco, left yesterday suddenly Apple without further 
explanation.

• Extraction of modifiers
• Tim Cook – livesIn – SF

• Extraction of time references:
• One day before document production time
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HooSIER IE Approach

• Entities and relations as Graphs
• Entities

• String representation
• Label = type
• All other information:

• Attribute-Value tuples associated with entity

• Relations
• String representation
• Label – predicate type (e.g. PropBank ID)
• All other information:

• Attribute-Value tuples associated with entity

• Relations have directionality, domain, and range
• Domain and Range can be entities (and relations in some Graph DBs)
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HooSIER IE Approach

• Linking of entities and relations to Knowledge Graphs and Ontologies
• Large Knowledge Graphs as Link targets

• Language independent URI/specification
• Detailed concept properties
• Multi-lingual representations or realizations of concept names
• Example: DBpedia, YAGO, MS Concept Graph, Google KG, etc.

• Ontologies (domain specific models, taxonomies)
• Core taxonomy relations: isA hierarchy essential for efficient reasoning
• Semantic type and consistency checking with assertions into graphs
• Reasoning

• Identification of the most specific hypernym for any entity/concept
• THING – … – MAMMAL – DOG – POODLE
• THING – ... – FRUIT – APPLE
• apple isA fruit
• poodle isA dog
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HooSIER IE Approach

• Typing of entities:
• NLP-based pre-typing

• Named Entity Recognition (NER) types: PERSON, ORGANIZATION, PLACE, DATE, TIME, 
CURRENCY, TITLE, … (5 to 7 core types of onomastic entities)

• Knowledge Graph based typing
• YAGO more than 17,000 types

• Domain specific NER or Taxonomy-based typing
• Our own model of types and potentially sub- or co-types

• Develop own NER components
• (Weighted) Finite State Transducers for (multi-) word analysis

• Trained NER models using own corpora and data-sets
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HooSIER IE Approach

• Linking Disambiguation
• Multiple types (hypernyms) for an entity in a given KG

• NER types reduce the ambiguity
• NLP components introduce error with NER

• Use word embeddings and vector based models for disambiguation
• Using Google, FastText, or GloVe vectors

• Given vector for the target entity word (or multi-word expression) X

• Tim Cook like apples.  →  X = apples/apple

• For every hypernym candidate (and its hypernym, synonyms, and hyponyms) Y compute 
the probability of the observed context

• Pick the one hypernym (and its semantic context) that best predicts the context of X
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HooSIER IE Approach

• Expand Graph Representations (multiple graphs or linked sub-graphs)
• Propositions represented as multiple entity-relation graphs

• True propositions

• Projected future related propositions

• Assumed false propositions

• Graph representation of Implicatures and Presuppositions

• Entity identification and typing
• Detailed semantic properties

• Most specific type from isA taxonomy

• Induction of types from Edge2Vec, predicate argument structures (e.g. VerbNet, 
PropBank), Graph similarity etc.
• Syntagmatic vs. Paradigmatic relations
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HooSIER IE Approach

• Applications:
• Event identification and extraction (types: political event, pandemic 

outbreaks, civil unrest, security related events, etc.)
• Agents, locations, time, timeline, causalities, victims, etc.

• Graph-similarity as document similarity

• Summarization using graph-based text generation

• Search and query
• Graph-search, e.g. query to graph and similarity search, graph navigation

• Ontology or Knowledge Graph generation
• Forensic, investigative

• AI or chatbot related
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Technologies

• Environment
• Microservices using isolated RESTful modules

• Mainly Java, Scala, Apache Spark
• Wrapping C(++), Python

• Databases
• MongoDB, PostgreSQL hosting Knowledge Graphs (DBpedia, YAGO, MS Concept Graph)

• Neo4J (Cypher), Stardog (SPARQL & OWL)

• Docker Containers
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