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1. Introduction

In the following we shall discuss a fairly simple empiricist approach to syntactic
structure, which could be considered as some sort of exemplar model.1 We compare
this approach and its empirical results and theoretical consequences briefly with a
common qualitative theory that is utilizing symbols and rules. The research goal is
to evaluate the usability of various information theoretic metrics for unsupervised
syntactic chunking, and potentially even basic parsing.

The presented experiment is based on ideas formulated in Magerman & Marcus
(1990), and Magerman (1994) where Mutual Information (MI) over Part-of-Speech
tags in annotated corpora is used as a metric for the identification of syntactic attrac-
tion or simply phrasality. A more detailed discussion of this method is presented in
section 2.

We compare the results of the MI-based approach with results from alternative
measures using the same strategy for identification of phrasality. The identification of
syntactic phrases or chunks in the second approach is performed by relating pruning
decisions to Relative Entropy (RE) scores for adjacent tokens. As mentioned in Ćavar
et al. (2004b), this measure might be more adequate given its directional nature (RE)
and the relevant properties of syntactic relations.

∗This paper is based on so far unpublished joint work with my former research assistants and
students Paul Rodrigues and Giancarlo Schrementi in the Computational Linguistics Lab at Indiana
University (IU). They had a significant contribution to this project. We are all grateful to IU and IU’s
Linguistics Department for making this work possible. However, I am most grateful to Peter Staudacher
for his inspiring comments on all the linguistic topics we discussed, not dismissing even the most
devious ideas and analyzes I came up with. It was, and always is a pleasure to have him around, not
just because of his profound knowledge, his social consciousness and well-grounded political views,
but also because of his distinct sociability and constancy.

1Here we consider recent research discussed and described in Bod (2009) and related work, as the
relevant type of exemplar model that we relate to here.
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Our experiments describe the results of grouping lexical items into phrase-like
units in raw text. We use an incremental learning algorithm, i.e. one that learns and
applies the syntactic chunking of raw text in parallel, as described in Ćavar et al.
(2004b). This way we have access to the learning curve, and we can track the devel-
opment of the statistical n-gram model, as well as the results of its application on the
input data.

Although the syntactic phrasing and chunking results in the discussed experiments
are moderate, they seem to show that such an incremental unsupervised learner/parser
converges to a stable performance, reaching a constant plateau, without tendencies to
break out with longer learning/parsing time. Finally, the implications of methods and
results have some relevance for theoretical syntax, as discussed in section 6.

2. Previous work

There are numerous research projects and results available in the domain of statisti-
cal parsing using for example a metric based on concepts from Information Theory
(Shannon, 1948). Unfortunately, we cannot discuss them all here. Instead we con-
centrate on the core ideas and reported results from a paper published by Magerman
& Marcus (1990), and related to e.g. Church (1988).

Magerman & Marcus (1990) suggested an algorithm for constituent recognition or
simplified parsing using MI scores over Part-of-Speech (PoS) tags from an annotated
corpus. They base their study on the Brown corpus (Francis & Kucera, 1982) with a
reduced subset of 64 PoS-tags. Given a sequence of tokens, the suggested structure
assigning algorithm determined a non-constituent (‘distituent’, as described below)
excited at the point in the given sequence where MI was at a local minimum. At this
point, a syntactic boundary was spliced in. Each sequence is thus split into two sub-
constituents, and each resulting constituent with more than two token is recursively
split using the same approach.

The MI score determines the amount of information shared between two items. In
this approach it is based on unigram and bigram statistics of PoS-tags. Magerman &
Marcus (1990) suggest it to be calculated using the following equation:

MI(x, y) = log
P (x, y)

P (x)P (y)
(1)

Here the probability P (x, y) is the observed maximum likelihood of the bigram
containing the tokens x and y, i.e. it is the relative frequency of the bigram xy cal-
culated on the basis of a given corpus. Similarly, the probabilities P (x) and P (y)
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are unigram probabilities of the single tokens, i.e. relative token frequencies, ideally
taken from the same corpus as the bigram frequencies.

Besides the common interpretation from Information Theory (MacKay, 2003),
there are alternative interpretations of the MI metric. One possible interpretation
of the MI formula above could be, in the sense of hypothesis testing, that it looks at
the ratio between two probability distributions, the observation and the expectation of
two events co-occurring. The expectation (given some null-hypothesis) could be that
the two variables x and y are independent, i.e. the likelihood of x and y co-occurring
should be the product of their individual occurrence likelihoods. If the two variables
are independent, the observed and the expected likelihoods should be close or ide-
ally equal to each other. Thus the ratio should be close to 1, and consequently the
logarithm close to 0.2 Thus, if two variables are rather independent, the resulting MI
score will be low, approaching 0. The higher the mismatch between the observation
P (XY ) and the expectation P (X)P (Y ), the higher the resulting MI score. In other
words, the more likely the two variables x and y are dependent, the larger the ratio
between observed and expected likelihood, the larger the resulting MI score.

From an empirical perspective, one might expect that the MI score for a sequence
of PoS-tokens Article Noun is much higher then for example for a sequence Noun
Verb, given that in ca. 80% of the cases an article is followed by a noun in any
common English text corpus, while the observed probability of a noun being followed
by a verb is significantly smaller.

In particular, Magerman & Marcus (1990) calculate the MI score over unigrams
and bigrams of PoS-tags, and not word or string tokens, i.e. they use statistical models
from linguistically annotated data. In fact, Magerman & Marcus (1990) suggest the
more general weighted metric Generalized Mutual Information (GMI), which can be
applied to any token window size, and is calculated using bigram statistics.

GMIi+j(x1 . . . xi, y1 . . . yj) =
∑

X ends with xi

Y begins with y1

1

δXY
MI(X,Y ) (2)

This formula calculates the GMI score for all token pairs as the sum of the MI
scores of all ngrams in which the first token is the right-peripheral element of the
initial ngram, and the second token is the left-peripheral element of the second ngram.
This score is weighted with the reciprocal of the standard deviation 1

δXY of the MI
score of one such token pair over the complete distribution.

The statistical models are generated by moving a window of two tokens along a
token sequence of a sentence taken from the corpus. The suggested algorithm in fact

2We assume the logarithm to the base of 2 here.
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pads each sentence on both sides with empty tags, up to the maximum word window
size (minus 1), thus, as the authors point out, normalizing the sentence lengths and
creating the adequate context for GMI calculations.

By searching the local MI minimum in a sentence, Magerman & Marcus (1990)
try to identify so called distituents, i.e. adjacent PoS-tokens that are unlikely to be
adjacent within a syntactic constituent. In other words, local MI minima in a to-
ken sequence intuitively seem to correspond to a situation where one token does not
contribute a lot about its neighboring token. This is what we expect to find when a
PoS-tag to the respective side does not restrict the choice of PoS-tokens due to the
lack of syntactic category or semantic selection. We will come back to this in the
following section.

In addition to the statistical constituent boundary metric, Magerman & Marcus
(1990) include a dictionary of predefined distituents as a supervision component in
their otherwise mostly unsupervised statistical distituent parsing algorithm. In the
following examples, such distituents assign the MI score of −∞ to corresponding
PoS-sequences. One such distituent is for example the sequence noun preposition in
example (2) below. The logic of overriding the real MI score is related to the fact
that higher MI scores indicate higher probability of two items belonging to one con-
stituent. A sequence of noun preposition in the selected corpus is frequent enough,
such that it would wrongly suggest a head noun and a right adjacent preposition to
be part of one basic syntactic constituent. Assigning −∞ scores to hand-crafted
distituents indicates no probability at all for two adjacent items to be syntactically
related in terms of sister nodes (or maybe head and complement).

The parser recursively recognizes distituents over a sequence. For the example in
(1) (Magerman & Marcus, 1990, pg. 987), the initial pass generates the GMI scores
for all PoS-bigrams.

(1) He
pro 3.28

directed
verb 3.13

the
det 11.18

cortege
noun 11.14

of
prep 1.20

autos
noun 7.41

to
prep

16.89
the
det 16.43

dunes
noun 12.73

near
prep 7.36

Santa Monica.
noun

The handcrafted distituent grammar assigns maximally low scores to bigram dis-
tituents, as in (2), resulting in a first chunk sequence as in (3).

(2) pro 3.28 verb 3.13 det 11.18 noun −∞ prep 1.20 noun −∞ prep 16.89 det
16.43 noun −∞ prep 7.36 noun

(3) [ he ] [ directed ] [ the cortege ] [ of autos ] [ to ] [ the dunes ] [ near Santa
Monica ]



On Statistical Metrics for Selection and Phrasality 5

According to Magerman & Marcus (1990, pg. 987), a threshold will prevent close
scores from being considered significantly different. Thus 3.28 and 3.13 are consid-
ered local minima, and thus the respective bigrams are assumed to be distituents. The
resulting structure after the third pass is illustrated in (4). The algorithm stops when
no further distituent can be identified.

(4) [ he ] [ directed [ [ the cortege ] [ of autos ] ] ] [ [ to [ the dunes ] ] [ near Santa
Monica ] ]

Without offering relevant details, Magerman & Marcus (1990) report good results at
parsing short sentences. An average error rate of one error per sentence for short input
sentences was reported. The average error rate increased to two errors per sentence
in sentences with conjunctions. In long sentences with a length between 16 and 30
words, the average error rate was reported as 5 to 6 errors. Unfortunately, there is no
detailed information available about the error types in all the different cases.

It is important to note, however, that these results were achieved with supervision.
They included a hand-crafted distituent list in their parsing algorithm. This list would
enforce PoS-sequences of the type Noun Preposition to be excluded as an adjacent se-
quence within constituents. Some such sequences might in fact be assigned a higher
MI score.

3. Resulting questions and issues

The discussed algorithm has various interesting properties. It generates hierarchical
structures in a bottom-up fashion, and the generated structures are n-ary-branching
trees. In fact, it seems to be purely statistically driven.

However, it is obvious that there are a couple of crucial conditions and supervi-
sion steps included in the algorithm. As already mentioned, handcrafted distituent
grammars are obviously essential, otherwise we could expect the performance of the
algorithm to drop dramatically, as the example above illustrates.

It is also important to note that the statistical models are extracted from linguisti-
cally annotated corpora, i.e. the supervision enters the statistical models via prepro-
cessed language data and classification information as PoS-tags.

Additionally, the integration of arbitrary thresholds, and other manually fixed val-
ues that are not discussed in this short description here, classify it for a supervised
algorithm.

It might be that the achieved results in fact dramatically depend on these super-
vision means, i.e. that they are real side-effects of intelligent design and supervi-
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sion, rather than emerge from statistical and distributional properties of language as
such. If so, it would be impossible to draw any theoretically relevant conclusion
from these experiments about properties of English or language in general, or other
consequences for the assumption about for example learnability.

Furthermore, the presented models are generated as static models in a training
phase, using a complete corpus, or a large portion of it.3 It is not clear, how this
approach would perform on other genres and languages. To be more precise, our
research hypotheses include the specific hypothesis that a learner is equipped with
dynamic memory (or a dynamic language model), which adapts to the input, and at
the same time is applied to it, processing the input it learns from. Static statistical
models are not necessarily appropriate for our own research goals and experiments,
which are related learnability and psycholinguistic and theoretical issues of knowl-
edge of language.

Another theoretical question is related to the nature and purpose of syntactic trees.
Some syntactic theories might not necessarily aim at representing hierarchical rela-
tions in a semantically relevant way. In the generative tradition, structural syntactic
relations are associated to semantic scope relations, i.e. the interpretation of a sen-
tence is associated with its syntactic structure. Scope is not necessarily a concept in
dependency trees, though. The question thus is, whether such scope relations can be
identified systematically, with such statistical approaches, and to what extend scope
errors might occur in the resulting trees.

With respect to the distituent or constituent metric, MI is not necessarily the op-
timal choice for describing and evaluating potential syntactic relations. One reason
is that syntactic relations are typically unidirectional, which is also part of the nature
of hierarchical relations. Usually just one lexical item or category requires or selects
another category or syntactic structure, while the latter usually does not restrict the
former, at least not in the same way. To exemplify this, consider the minimal pair in
(5)–(6):

(5) John saw a bird.

(6) *John saw in Paris.

The ungrammaticality of (6) in generative grammar might be attributed to a violation
of lexically specified selectional properties of verbs (e.g. Chomsky, 1965). In this
particular example, a valid assumption might be taht the verb to see requires its direct
object to be a noun phrase, as in (5), rather than a preposition phrase as in (6). On the

3A common strategy is that portion of the corpus is not used for generation of the respective statis-
tical models. The same strategy was used by Magerman & Marcus (1990) in the discussed experiments.
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other hand, it would be difficult to state something similar for the noun phrase a bird
or the preposition phrase in Paris in the examples above.

If we extend this concept of restrictive relation or selection to the lexical level, we
might come to similar conclusions. The occurrence of the article the makes native
speakers of English expect a noun to appear in the immediate local context, following
the article. They would probably not have a clear intuition about some concrete noun
to follow, i.e. they tend to have categorial intuitions associated with concrete lexical
forms. On the other hand, our intuition about the preceding context of the seems to
be rather deficient. We can test this for example in cases where the preceding word
was rendered incomprehensible using noise.

In fact, as with the examples (5)–(6), the occurrence of the article the triggers the
expectation of a specific syntactic category to follow it. However, with other lexical
elements it might be that the expected property in the immediate right context is
that of a concrete lexical element. For example, prepositions or certain verbs seem
to have a more lexical association. The co-occurrence frequency of a preposition
and an article might be responsible for the strong association between for example
on and the to the right of it, or similarly for the sequence said and that. Here too,
the occurrence of the does not seem to let native speakers of English expect a on to
precede it. Neither does the occurrence of that increase significantly the expectation
of a preceding said in its immediate context.

While it seems obvious that syntactic relations and lexical selections or dependen-
cies are directional, the MI metric on the other hand is not.

MI relates the probability of two events co-occurring P (XY ) to the probability of
them co-occurring and not being dependent on each other P (X)P (Y ). As for the
logical AND operator, it is in principle irrelevant in which order X and Y co-occur.
We might expect a non-directional metric like MI to be less relevant for syntactic re-
lations, where directionality seems to play a role. Additionally, one of the problems
of the presented approach is also that the trees are not labeled, and it is not trivial to
discriminate automatically the head from its complement in the resulting structures.
The authors are vague about this issue, and indeed imply specific hierarchical rela-
tions in their example parse, which are not as obvious, or in fact, seem to be geared
towards an ideal parse.4

Furthermore, MI is a frequency sensitive score. The lower the frequency of the
relevant tokens, the more unreliable MI is. This can be easily verified with some
simple examples of low-frequent tokens co-occurring in corpora. However, in an ap-

4The presented structural representation implies a hierarchical head-complement relation as in [ to
[ the dunes ]] while the parse history suggests a non-hierarchical structure with sister relations, as [[ to
][ the dunes ]].
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proach as presented in Magerman & Marcus (1990), this does not seem to be relevant,
since the chosen strategy was to use PoS-tags for statistical ngram models, and not
words. Additionally, the authors also use a reduced set of PoS-tags, boosting their
distributional statistics even more, and thus MI is in fact expected to be more reliable.

Magerman & Marcus (1990) emphasized that on the word level the described ap-
proach would require much larger corpora to overcome the data scarcity problem.
However, it is not clear how big the differences between the word- and the PoS-tag
level really are, given the proposed information theoretic statistical metrics and mea-
sures. It would be interesting to see how much of the ‘dominant syntactic properties’
potentially correlates with statistical and distributional properties intra- and cross-
linguistically. Furthermore, from an empirical and data driven perspective, it would
be useful to establish a hierarchy of necessary supervision strategies that could guide
such algorithms either as language specific strategies, or maybe even cross-linguistic
ones.

4. Experimental strategies and evaluation
In the following we shall lay out the goals and concepts of our experiments, which
are based on the ideas and resulting questions and critiques of Magerman & Marcus
(1990), but focusing on the following design strategies:

• Incremental learning algorithms

• Dynamic statistical models

• Minimization of supervision strategies

Our focus on incremental learning algorithms and dynamic statistical models is re-
lated to general research hypotheses and questions of learnability and convergence of
models. In our implementation of a statistical parser and learner, every input sentence
is immediately extending the statistical language model, and the parser generates with
every input sentence a hypothesis about its structure.

The language models that we use, are unigram and bigram models, similar to the
parser discussed above. As input we use raw word tokens and PoS-tags from a portion
of the Penn Treebank (Marcus et al., 1993). From the word tokens and PoS-tags we
generate four types of models, including mixed models that use word tokens and
PoS-tags.

• token – token
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• token – type

• type – token

• type – type

The reason for testing all these mixed models is related to the mentioned intuition
that prediction and expectation of token and type correlations and co-occurrences
seem to be part of the cognitive ability of native speakers. By testing comparatively
the token–token and type–type models, we can also directly evaluate the predictions
that are common in the literature that token–token relations are problematic because
of the data scarcity problem.

Our suggested parsing method is much simpler than the method suggested by Mar-
cus et al. (1993). We use two metrices for the evaluation of distituents or constituents,
MI and Relative Entropy (RE) or Kullback–Leibler divergence. MI is calculated for
each bigram <xy> and the respective unigrams in the following way (cf. MacKay,
2003):

P (<xy> |x) lgP (<xy>)
P (x)P (y)

(3)

That is, we take into account only directional probabilities, by only considering
bigram probabilities of bigrams where x occurs only as the left or initial item in a
bigram.

RE is a comparison or distance measure of two probability distributions. We com-
pare the likelihood of y occurring independently, with the likelihood that it occurs,
given that x occurred. If x and y are statistically independent, then P (y|x) should be
equal to P (y). If the two variables are dependent, P (y) is smaller than P (y|x), than
the resulting RE-score will be low, potentially even negative. It is calculated for each
bi-gram <xy> in the following way:

P (y) lg
P (y)

P (y|x)
(4)

Given the specific architecture that we want to test here, and for simplicity reasons,
zero probabilities of previously unseen tokens and bigrams do not occur, i.e. if an
item is in the input sentence, it is immediately integrated into the statistical language
model. This happens before the respective model with the previously unseen events
is applied to parse the respective input.

An alternative strategy one might pursue could be to treat items differently that
have not occurred before, by using the string entropy as the RE-score, as given in the
following formula:
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lg 26 · len(y) (5)

Here we assumed the number of different characters in the respective corpus, text,
or language to be 26. Furthermore, for simplification reasons we assume that the
likelihood of every character to occur is equal. The entropy of the string is then the
product of the number of characters in the string (word token in our case) and the
logarithm to the base of two of the number of characters. It did not seem relevant for
our purpose here to provide more detailed estimates of the entropy of a previously
unseen string.

Even more advanced strategies might include various smoothing techniques to
cope with unseen data from the training corpus. Once again, the model we test here
makes no distinction between training and test corpus. It is an incremental learner
model.

The difference between RE and MI becomes clear, if the respective equations
above are compared. RE is an asymmetric measure, i.e. the RE score should dif-
fer for two different items x and y occurring in the same bigram, if their individual
probabilities differ.

As already mentioned, RE also behaves differently then MI, i.e. the lower the RE-
score, the higher the probability that two distributions are related, in a directional
sense. We expect RE to be better suited for directional selection effects, as we can
find them in syntax.

The differences between MI and RE, and in particular the fact that RE seems to be
better suited for specific lexical induction tasks was pointed out in Lee (1997). The
superiority of RE for measuring and predicting certain linguistic relations has been
confirmed also in a morphological segmentation task as described in Ćavar et al.
(2004a).

The algorithm that we use is similar to the already discussed one, i.e. we introduce
phrase boundaries where the MI-score is lowest, or the RE-score is highest. However,
in principle, there are various potential strategies to parse the input sequence, and we
are interested in the differences between them, with respect to the model we choose.
The top-down strategy could identify the absolute MI minimum or RE maximum,
and split the sequence of items there, and continue recursively splitting the individual
chunks, as long as there are more than two items left in each of them. Alternatively,
the bottom-up strategy could combine two items or chunks (or any other combination
of chunks and items) into one chunk, whenever between such items the MI-score
is highest or the RE-score is lowest within its domain (sentence or chunk). The
following example illustrates a top-down pruning strategy, and the resulting tree,
using the example (7) from above.
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(7) He
pro 3.28

directed
verb 3.13

the
det 11.18

cortege
noun 11.14

of
prep 1.20

autos
noun 7.41

to
prep

16.89
the
det 16.43

dunes
noun 12.73

near
prep 7.36

Santa Monica.
noun

Using the distituent-strategy, the sequence in (7) would be recursively split into two
segments, where within the segment the lowest MI score occurs. This would be
applied to all resulting sequences (potential constituents), until a further segmentation
is impossible. In the initial segmentation step applied to the PoS-tags the resulting
two segments are displayed in (8). The subsequent segmentation step leads to the
structure in (9).

(8) [ pro 3.28 verb 3.13 det 11.18 noun 11.14 prep ] [ noun 7.41 prep 16.89 det 16.43
noun 12.73 prep 7.36 noun ]

(9) [ [ pro 3.28 verb ] [ det 11.18 noun 11.14 prep ] ] [ [ noun 7.41 prep 16.89 det 16.43
noun 12.73 prep ] [ noun ] ]

The final tree structure for the given example using the top-down MI-minimum prun-
ing strategy based on PoS-tag unigram and bigram statistics is illustrated in (10).

(10)

he directed
the cortege of

autos

to the dunes
near

Santa Monica

And, in fact, the same structure would result, if we apply a bottom-up constituency
approach based on the PoS-tag statistics. In a constituency approach we would merge
two adjacent tokens into one constituent, where we reach a local MI-maximum, re-
cursing over the complete sequence. The resulting tree for the given example using
such an approach should correspond to the one in (10).

However, we do expect different tree structures to result from using the RE-score,
or even other statistical models and measures. As already mentioned, we could con-
sider the MI and RE scores based on any of the four combinations of elements in a
bigram, i.e. token–token, token–type, type–token, and type–type.
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It is obvious that the resulting tree in (10) would not pass the professional rating
of syntacticians. It is definitely not an accurate syntactic representation of the under-
lying sentence. However, parts of it might be. Our research question is to find out to
what extend it could be possible to recognize phrases and structural properties using
just the simplest baseline strategies.

Using these strategies, the resulting trees would always be strictly binary branch-
ing. However, the trees do not provide constituent labels. It would not be obvious to
decide which of the tokens in a constituent could be the head. We do not deviate here
from the parsing strategy discussed above.

On the other hand, if the feature-make-up of the tokens would be available in the
resulting tree, the category properties could be handled lexically, in a similar way
as suggested for example in the Minimalist Program (Chomsky, 1995) or variants
of lexically driven grammars, like for example categorial grammars (e.g. Steedman,
2001).

We expect the RE-score, since it is directional, to provide a clue about the potential
head-position in the sense that one element in the constituent will be statistically more
restrictive towards one side. With statistical restrictiveness we mean that the variation
of the number of different tokens or PoS-tags might be smaller on one side, then on
the other. This could be interpreted as some sort of selection, either c(ategory)- or
s(emantic)-selection.

The MI-score is used in the following way. For every input sentence and for every
bigram in the sentence the MI value is calculated. The sentence is split into two
parts at the lowest MI-value, and this is repeated recursively for every resulting part,
up to the token level. Each split introduces two new constituents in syntactic terms.
For each bigram type (token–token, token–type, type–token, type–type) using the
MI-score one syntactic structure is generated.

The RE-score is used in the same way, splitting the sentence at the maximum
RE-score of one of the contained bigrams, and recursively applying this splitting
operation to the resulting sub/constituents, as in the case of MI-based sentence seg-
mentation.

The parser outputs eight different sentence structures that are annotated with a
score that represents the evaluation score, which is determined by comparing the
Penn Treebank structure with the generated structure (matching and mismatching
brackets). The score is the total of the distance between the left and right parentheses
distances.

The architecture of the system allows for offline training as well as dynamic online
training. Included are functions that extend the language model with every input sen-
tence, i.e. the token and bigram statistics are updated and persistently stored. Thus,
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with every evaluation phase the language model is incrementally trained or extended.
This provides insights into the runtime development of the languages model, its de-
velopment curve and accuracy for all parameters (i.e. the statistical scores MI and
RE, as well as the token or type information used).

4.1 Training and testing corpora

The parser was trained and tested using the Brown corpus (Francis & Kucera, 1982)
with a reduced PoS-tag set. All punctuations were left unchanged. The lexical PoS-
tags were reduced to 11 basic lexical classes, e.g. verb, noun, preposition etc.

The evaluation is based on the data in the Penn Treebank (Marcus et al., 1993),
i.e. the same data used in Magerman & Marcus (1990).5 The advantage of using the
sentences from the Penn Treebank are that the sentence structure is provided and can
be used for immediate runtime evaluation. In our implementation of the experiment
the parser consumes raw sentences as either sequences of word tokens, PoS-tags, or
a combination of both. The evaluation of the resulting parse tree is automatically
performed by comparing the bracketing provided in the corpus with the hypotheses
generated by the parser.

Given the fact that trees in the Penn Treebank are not strictly binary branching
trees, the evaluation scores are to be taken as tendencies. A detailed analysis of the
resulting parser accuracy would still require manual evaluation and judgment.

5. Results

The preliminary results indicate that type–type relations result in structures that better
match the Penn Treebank trees. Once again, the Penn Treebank does not contain
purely binary branching trees. A mismatch is expected and the resulting evaluation
cannot make direct quantitative statements about parsing accuracy.

On the tests performed so far, the RE-based segmentation is outperforming the
MI-based segmentation, however, not by a large margin.

The results based on one experiment using the Brown corpus as a training set, and
10 % of the Penn Treebank as the evaluation basis are illustrated in the time plot in
figure 1. The lower the score in this plot, the better the parse tree in comparison to
the Penn Treebank trees.

5The initial test was performed on 10% of the Penn Treebank. A test sample is for example provided
in the data package of the Python Natural Language Toolkit (Bird et al., 2009).
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Figure 1: Parsing accuracy over time

6. Conclusion

We can conclude that for a syntactic parse type–type relations give better results than
any token-based relation. This was expected. Both type–type parse strategies are
clearly better than any of the other models. In fact the type-statistical models are
much more dense than the pure word token statistics.

The reduction of the PoS-tags in the Brown corpus boost the statistical models,
but it could in fact introduce new problems. We have not tested for the effect of the
PoS-tagset reduction. The tests on the full Brown tagset have not yet been performed.

The fact that the RE-based segmentation outperforms the MI-based ones, could be
interpreted as being due to the fact that syntactic relations indeed are asymmetric.
This is one of the expected results.

There is a lower token–token accuracy, which might be due to independent effects
of token frequencies and their common distribution properties. We tested the token
the for example for its average MI- and RE-score to the left and right. This can
be done by averaging the sum of all MI-scores for bigrams in which the token the
occurs in second position, and taking this score to be the left average MI-score of the.
Calculating the same score for all bigrams in which the token the occurs in the initial
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position would be the right average MI-score for it. If we compare this also with the
corresponding average RE-scores left and right of the, we can see that in the Brown
corpus the left MI-score for the is higher than the right one.

This could mean that the variation of tokens to the left of the is much lower than to
its right. This is counterintuitive, as already discussed in the previous sections. Over-
all, our expectation is that the right context of the is much more restricted. But, given
the fact that the occurs frequently in sentence initial position, and less frequently, or
not at all in sentence final position, artificially creates this distributional statistical
property.

One way to improve the statistics of elements that tend to appear frequently in
sentence initial or sentence final position would be to pad every sentence with a ran-
domly generated non-word token left and right, as shown in example (11).

(11) 26376182 The answer is a new era . 78655465

The bigram model will then include many bigrams with the preceded by some ran-
dom number, but the frequent occurrence of it in sentence initial position with its
artificial effect of variation reduction would be neutralized. In fact, the properties
of most of the highly frequent function words would actually correspond to their
syntactic properties, i.e. being selective towards one side, as illustrated in table 1.

Av.L.RE token Av.R.RE Av.L.MI token Av.R.MI
+ the – – the +
+ a – – a +
+ on – – on +

Table 1: Average left and right RE and MI for single tokens

The average left and right RE and MI scores for highly frequent function words
o indeed provide accurate structural information. In fact, they could be used as cues
for the induction of selection directions and headedness in phrasal structures. In our
parsing algorithm the introduction of constituent boundaries at high RE and low MI
scores at one side of such prominent function words would dramatically improve the
parse accuracy.

Given the presented baseline results, it seems to be clear that:

• Statistical properties of the distribution of tokens or PoS-speech tags can be
used for the induction of syntactic properties. Maybe even structural selection
or restriction properties of some tokens can be induced, and consequently for
example headedness, transitivity etc.
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• Dynamic n-gram, as described in this particular task, seem to stay robust with
respect to their accuracy, independent of the size of the training corpus. Incre-
mental learning seems to converge to some stable plateau.6

In future experiments the observations and expectations need to be tested on other
languages, with much larger corpora. The role of the PoS-information, whether it is
more general, or specific and detailed, should be evaluated as well.

In general, what these type of experiments seem to show is that statistical distri-
butional information about linguistic units in specific linguistic contexts can reveal
some significant portion of structural information. Here one has to be careful with
conclusions about empirical versus deductive theoretical models. As has been shown,
the statistical models that take discrete linguistic information into account outperform
purely empirical ones (i.e. word token based models).

The implementation of the described parser in Python, the relevant data, and the
log files and further information packages used in these experiments are available
under the Creative Commons license at the following URL:
http://ling.unizd.hr/~dcavar/MIREParse/
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Ćavar, D., G. Schrementi & P. Rodrigues (2004b). Syntactic Parsing using Mutual
Information and Relative Entropy. Paper presented at the Midwest Computational
Linguistics Colloquium (MCLC).

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, Massachusetts:
MIT Press.

Chomsky, N. (1995). The Minimalist Program. Cambridge, Massachusetts: MIT
Press.

Church, K. W. (1988). A Stochastic Parts Program and Noun Phrase Parser for Un-
restricted Text. In: Proceedings of the second conference on Applied natural lan-

6This needs further detailed testing with much larger corpora.

http://ling.unizd.hr/~dcavar/MIREParse/


On Statistical Metrics for Selection and Phrasality 17

guage processing. Morristown, NJ, USA: Association for Computational Linguis-
tics. 136–143.

Francis, W. & H. Kucera (1982). Frequency Analysis of English Usage. Boston, MA:
Houghton Mifflin.

Lee, L. (1997). Similarity-Based Approaches to Natural Language Processing. Ph.d.
dissertation. Harvard University, Cambridge, MA.

MacKay, D. J. C. (2003). Information theory, inference, and learning algorithms.
Cambridge, UK; New York: Cambridge University Press.

Magerman, D. M. (1994). Natural Language Parsing as Statistical Pattern Recogni-
tion. Ph.D. thesis. Stanford University.

Magerman, D. M. & M. P. Marcus (1990). Parsing a Natural Language Using Mutual
Information Statistics. In: T. Dietterich & W. Swartout (eds.) Proceedings of the
Eighth National Conference on Artificial Intelligence. Boston, MA: The AAAI
Press. 984–989.

Marcus, M. P., B. Santorini & M. A. Marcinkiewicz (1993). Building a Large An-
notated Corpus of English: The Penn Treebank. Computational Linguistics 19.
313–330.

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System
Technical Journal 27. 379–423, 623–656.

Steedman, M. (2001). The Syntactic Process. Cambridge, Massachusetts: MIT Press.


	Introduction
	Previous work
	Resulting questions and issues
	Experimental strategies and evaluation
	Training and testing corpora

	Results
	Conclusion

